k^3+6k^2+11k+6=(k+1)(k+2)(k+3)

Simple and best practice solution for k^3+6k^2+11k+6=(k+1)(k+2)(k+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^3+6k^2+11k+6=(k+1)(k+2)(k+3) equation:


Simplifying
k3 + 6k2 + 11k + 6 = (k + 1)(k + 2)(k + 3)

Reorder the terms:
6 + 11k + 6k2 + k3 = (k + 1)(k + 2)(k + 3)

Reorder the terms:
6 + 11k + 6k2 + k3 = (1 + k)(k + 2)(k + 3)

Reorder the terms:
6 + 11k + 6k2 + k3 = (1 + k)(2 + k)(k + 3)

Reorder the terms:
6 + 11k + 6k2 + k3 = (1 + k)(2 + k)(3 + k)

Multiply (1 + k) * (2 + k)
6 + 11k + 6k2 + k3 = (1(2 + k) + k(2 + k))(3 + k)
6 + 11k + 6k2 + k3 = ((2 * 1 + k * 1) + k(2 + k))(3 + k)
6 + 11k + 6k2 + k3 = ((2 + 1k) + k(2 + k))(3 + k)
6 + 11k + 6k2 + k3 = (2 + 1k + (2 * k + k * k))(3 + k)
6 + 11k + 6k2 + k3 = (2 + 1k + (2k + k2))(3 + k)

Combine like terms: 1k + 2k = 3k
6 + 11k + 6k2 + k3 = (2 + 3k + k2)(3 + k)

Multiply (2 + 3k + k2) * (3 + k)
6 + 11k + 6k2 + k3 = (2(3 + k) + 3k * (3 + k) + k2(3 + k))
6 + 11k + 6k2 + k3 = ((3 * 2 + k * 2) + 3k * (3 + k) + k2(3 + k))
6 + 11k + 6k2 + k3 = ((6 + 2k) + 3k * (3 + k) + k2(3 + k))
6 + 11k + 6k2 + k3 = (6 + 2k + (3 * 3k + k * 3k) + k2(3 + k))
6 + 11k + 6k2 + k3 = (6 + 2k + (9k + 3k2) + k2(3 + k))
6 + 11k + 6k2 + k3 = (6 + 2k + 9k + 3k2 + (3 * k2 + k * k2))
6 + 11k + 6k2 + k3 = (6 + 2k + 9k + 3k2 + (3k2 + k3))

Combine like terms: 2k + 9k = 11k
6 + 11k + 6k2 + k3 = (6 + 11k + 3k2 + 3k2 + k3)

Combine like terms: 3k2 + 3k2 = 6k2
6 + 11k + 6k2 + k3 = (6 + 11k + 6k2 + k3)

Add '-6' to each side of the equation.
6 + 11k + 6k2 + -6 + k3 = 6 + 11k + 6k2 + -6 + k3

Reorder the terms:
6 + -6 + 11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3

Combine like terms: 6 + -6 = 0
0 + 11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3
11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3

Reorder the terms:
11k + 6k2 + k3 = 6 + -6 + 11k + 6k2 + k3

Combine like terms: 6 + -6 = 0
11k + 6k2 + k3 = 0 + 11k + 6k2 + k3
11k + 6k2 + k3 = 11k + 6k2 + k3

Add '-11k' to each side of the equation.
11k + 6k2 + -11k + k3 = 11k + 6k2 + -11k + k3

Reorder the terms:
11k + -11k + 6k2 + k3 = 11k + 6k2 + -11k + k3

Combine like terms: 11k + -11k = 0
0 + 6k2 + k3 = 11k + 6k2 + -11k + k3
6k2 + k3 = 11k + 6k2 + -11k + k3

Reorder the terms:
6k2 + k3 = 11k + -11k + 6k2 + k3

Combine like terms: 11k + -11k = 0
6k2 + k3 = 0 + 6k2 + k3
6k2 + k3 = 6k2 + k3

Add '-6k2' to each side of the equation.
6k2 + -6k2 + k3 = 6k2 + -6k2 + k3

Combine like terms: 6k2 + -6k2 = 0
0 + k3 = 6k2 + -6k2 + k3
k3 = 6k2 + -6k2 + k3

Combine like terms: 6k2 + -6k2 = 0
k3 = 0 + k3
k3 = k3

Add '-1k3' to each side of the equation.
k3 + -1k3 = k3 + -1k3

Combine like terms: k3 + -1k3 = 0
0 = k3 + -1k3

Combine like terms: k3 + -1k3 = 0
0 = 0

Solving
0 = 0

Couldn't find a variable to solve for.

This equation is an identity, all real numbers are solutions.

See similar equations:

| 3/2=1w/8 | | Z=-4+7i | | (3x-9x)+(9y-7y)=-6 | | Ifz=4-7i | | X=27+x | | 6(t-1)=9(t+-4) | | f(x)=6x^2+150 | | 2x^2+8x-2x=0 | | 10x+192=180 | | 4q^2+80q-84=0 | | 1/8p=3/8p | | (X+7)(x-2i)(x+2i)=0 | | 9x+5x=-32+8 | | h=-16ft^2+50 | | -8x-40=-104 | | 1.8x-3.6-8=7x-18-2x | | -10.5=3(2y+3)+2 | | -9(14-7x)=1072 | | 7(x-3)=-49 | | 8d^2-2d-3=0 | | -13p-2p=-3(-10p-4)+2(11p-6) | | (3/7)s=-8 | | 7+6g=5g | | 76=-5x+32 | | 5me+4me=2145ga | | 27.95(3)+0.34=200 | | 50+4x=-18 | | 6.4=18.4+2a | | 1.8x-3.6-8=5x-18 | | 3b+6=3(b+2) | | 2(n+4) = 20 | | 6x^2+30x-29=0 |

Equations solver categories